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Abstract AQuasi-Newton method was applied in the context
of a molecular statics approach to simulate the phenomenon of
hydrogen embrittlement of an iron lattice. The atomic system is
treated as a truss-type structure. The interatomic forces
between the hydrogen–iron and the iron–iron atoms are
defined by Morse and modified Morse potential functions,
respectively. Two-dimensional hexagonal and 3D bcc crystal
structures were subjected to tensile numerical tests. It was
shown that the Inverse Broyden’s Algorithm—a quasi-Newton
method—provides a computationally efficient technique for
modeling of the hydrogen-assisted cracking in iron crystal.
Simulation results demonstrate that atoms of hydrogen placed
near the crack tip produce a strong deformation and crack
propagation effect in iron lattice, leading to a decrease in the
residual strength of numerically tested samples.
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Introduction

Hydrogen embrittlement is one of the most dangerous
phenomena affecting the mechanical properties of commer-
cial steel. Hydrogen is highly mobile and can diffuse

through the crystal lattice, dissolving into its interstitial sites
[1, 2]. The presence of stress in a metal significantly
intensifies the process of hydrogen absorption; hydrogen
accumulates in the immediate vicinity ahead of the crack tip
and it can contribute to catastrophic failures [3] even
without significant deformation of the material structure.
The oil and gas markets are challenged by the growing
demand for ever-increasing strength in pipelines for the
transportation of gas or petrochemical products. Since high
strength steels are more vulnerable to the presence of
hydrogen [4], their use makes hydrogen embrittlement a
continuing concern in the oil and gas industries.

Despite extensive studies, the mechanisms of hydrogen
effects on subcritical crack nucleation and growth have
remained unclear due to a number of factors governing it
on the atomic level. Since experimental studies cannot
usually reach the atomic scale, analysis at the atomistic
level offers an opportunity to investigate the nature of
hydrogen embrittlement.

A number of atomistic simulations on the effect of
hydrogen have been performed for single iron crystals in
the past [5–12]. Among the most important results was
evidence for a phenomenon that became known as
embrittlement. However, these results were mostly qualita-
tive and did not include the deformation characteristics of
the embrittled iron crystal, which are the basis for a com-
prehensive understanding of hydrogen embrittlement mech-
anisms. In the following, in order to provide deeper insights
into the phenomenon of embrittlement, the influence of
hydrogen is simulated by using the quasi-Newton method
in numerical nano-scale tensile tests on hydrogen-saturated
iron crystal.
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Methods

Choice of atomistic method for modeling

Atomic-scale modeling of the fracture behavior of materials
belongs to the current challenges of materials science.
Atomistic simulation methods based on classical force fields
provide a computationally efficient means of atomistic
simulation of nano-scale deformation and fracture. These
methods include molecular dynamics (MD) and molecular
statics (MS) techniques.

In problems dealing with crack formation, the time-
independent MS approach is widely used [13–17]. A
limitation of this approach is that the simulation is
performed for a 0°K temperature, but it has the advantage
that it allows the dynamic process of cracking to be
followed in a quasistatic manner, which in MD would be
possible only by extraordinarily long time trajectories. The
analysis presented in this paper falls into the MS formula-
tion framework.

Within the MS framework there are two different
approaches that provide ways of finding the equilibrium
position of the atomic structure. The equilibrium position
can be reached by either minimizing the total system
potential energy or by moving the atoms until the
maximum net force on any atom becomes sufficiently
small. The choice of boundary conditions defines the type
of numerical algorithm to be applied for the calculation.

Two major families of algorithms are most appropriate
for finding the equilibrium position of atomic systems
subjected to boundary displacements. The first family goes
under the name “conjugate gradient methods” and the
second, “quasi-Newton methods”. As illustrated in Table 1,
the estimated number of arithmetic operations for both
approaches is O(N2) [18–20]. In the case of stress boundary
conditions, the Newton-Raphson and the quasi-Newton
methods are most frequently used. Note, however, that the
Newton-Raphson method is computationally demanding,
requiring O(N3) arithmetic operations, and, in this respect,
the quasi-Newton method is superior.

Of the aforementioned algorithms, the conjugate gradi-
ent method and the quasi-Newton method require the least
possible number of arithmetic operations, namely O(N2).

While the conjugate gradient and quasi-Newton methods
are similar in terms of their computational efficiency,
application of the former is restricted to displacement
boundary conditions, while the quasi-Newton method does
not have such a limitation and can be applied not only to
boundary displacement but also to force or mixed boundary
conditions. Both these advantages—computational efficien-
cy and universality—make the quasi-Newton method
attractive for implementation in atomistic-scale modeling
of material deformation and fracture.

Simulation techniques

From the structural point of view, material degradation
constitutes the re-arrangement of atomic positions and
transformation of the lattice as a structure. The proposed
time-independent quasi-static approach is based on integra-
tion of MS and structural mechanics approaches. Following
this approach, the crystal structure is treated as a truss
system, with the forces between the atoms situated at the
nodes defined by inter-atomic potentials. According to the
Morse function, the potential energy of two atoms i and j
separated by a distance Rij is defined as follows:

6 xð Þ¼" e�2m x�1ð Þ�2e�m x�1ð Þ
� �

ð1Þ

where x ¼Rij

�
Re is the interatomic distance (dimension-

less), Rij the interatomic distance (Å), Re the equilibrium
distance (Å), and ɛ and m are constants.

The Morse potential function developed by Olander, and
the modified Morse potential developed by Fujiwara and
Ishii were used to describe the H–Fe and the Fe–Fe
interatomic interactions, respectively [9, 21]. The analysis
presented in [12] showed that these potentials “agree fairly
well with experimental values”.

The following Morse potential parameters were used:

1. H–Fe potential: a=2. 2.867 [(Å); Re=1.12a (Å); m=
2.96; ɛ=4.6 kcal mol-1 [21]

2. Fe–Fe potential: a=2.867 (Å) Re=0.993a (Å); m=3.95;
ɛ=9.63 kcal mol-1 [21, 22]

In the modified Morse potential of Fe–Fe, the long-range
tail of the original Morse potential was truncated by using a
function f(x). Thus, the modified Morse potential takes the
form:

6Modified xð Þ¼6 xð Þ � f xð Þ; ð2Þ
where

f ðxÞ ¼
1 x < 1
3z4 � 8z3 þ 6z2 xc > x > 1
0 x > xc

8<
: ð3Þ

z ¼ x� xcð Þ= 1� xcð Þ; xc¼Rcut�off=Re. According to Fujiwara-
Ishii [21], xc=1.4. So ,at this distance (Rcut-off/Re=1.4) ,the Fe–

Table 1 Choice of simulation method

Most appropriate
method

Boundary conditions Number of
arithmetic
operationsBoundary

displacement
Applied
stress

Conjugate gradient X O(N2)
Quasi-Newton X X O(N2)
Newton–Raphson X O(N3)
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Fe potential converges smoothly to zero. The H–Fe potential
has a significantly longer range of interaction; it converges to
zero at about xc=3.1, and this distance was chosen as a cut-off
limit for the H–Fe interaction; H–H interactions were neglected.

The interatomic force law corresponding to the above
potential is F Rij

� �¼d6 Rij

� ��
dRij. Figure 1 shows the

interatomic bonds in a two-dimensional (2D) hexagonal
iron-lattice structure with a nano-scale crack (Fig. 1a) and
an enlarged region near the crack tip (Fig. 1b) containing
the embedded hydrogen atom. In this figure the blue lines
illustrate the iron–iron interaction and the red lines the
hydrogen–iron interaction.

In the following, both load and displacement boundary
conditions are considered for the structure. Within the
framework of the MS approach, an inelastic deformation of
the iron structure is considered as a sequence of constrained
equilibrium states. The load/displacement is applied incre-
mentally to the outmost atoms and the system is then
allowed to relax to its equilibrium configuration. The search
for a current equilibrium state is performed by an iterative
procedure where, at each step, the atomic system is treated
as a truss-type structure. In the context of structural
mechanics, a link between any two interacting atoms can
be considered as a two-node element with two degrees of
freedom at each node for the planar case and with three
degrees for the three-dimensional (3D) case.

The stiffness of such an element mathematically con-
stitutes the second derivative of the potential energy
function:

k0½ � ¼ ��
6ðRijÞ � 1 �1

�1 1

� �
ð4Þ

The modified Morse potential is a highly non-linear
function, which switches the sign of its second derivative
from positive to negative at the interatomic distance at
which the interaction force reaches the maximum.

Fig. 1 Two-dimensional (2D) hexagonal iron-lattice structure (a) and enlarged region with one hydrogen atom embedded (b)

Fig. 2 Test problem: a 3-atom structure—initial configuration; b
structure under the load—new equilibrium state (computed)
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In the global coordinate system, the element stiffness
matrix [kel] is

kel½ � ¼ Tϕ

� 	T
k0½ � Tϕ

� 	 ð5Þ
where [Tϕ] is a coordinate transformation matrix. For a
plane truss element (2D-structure)

T8

� 	
2�4

¼ cos8 sin8 0 0
0 0 cos8 sin8

� �
ð6Þ

where 8 is the angle between the x-axis in the local
coordinate system and the x-axis in the global one. The
operation (5), (6) produces a 4×4-matrix.

For a space truss element (3D-structure)

T8

� 	
2�6

¼ l1 m1 n1 0 0 0
0 0 0 l1 m1 n1

� �
ð7Þ

where l1, m1 and n1 are direction cosines of the element
axis. In this case [kel] is a 6×6 matrix.

After assembling the elements, the equilibrium state of
the crystal is described by the following nonlinear algebraic
system of equations

K½ � Df g¼ Rf gA ð8Þ
where [K] is the structure stiffness matrix, which is a
function of displacements and thus varies at each iterative
step; {D} is the nodal displacement vector; and {R}A is the
force vector.

The solution of such a system, namely the search for a
displacement vector for a given load, requires the use of an
appropriate incremental/iterative procedure. Based on the

analysis performed, the Inverse Broyden’s Algorithm (IBA)
[23, 24], which belongs to the class of quasi-Newton
methods, was selected as the method of choice for the
simulation. Further implementation showed that it can
handle the problem of high non-linearity including the
positive-to-negative transition of element stiffness.

Fig. 3 Search for solution.
Black points Search results after
the (i−1)th iteration, green
points iterations after the ith
iteration, dashed horizontal lines
projections of the external load
on the direction of the link 1–3
(dashed red line) and link 2–3
(dashed blue line)

Fig. 4 Relaxed 2D hexagonal iron structure with one hydrogen atom
(red) embedded
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The IBA represents the generalization of the Secant
method extended to systems of nonlinear equations. The
important feature of the IBA method is that it deals with the
updating of the inverse of the global stiffness matrix and
not with the stiffness matrix itself.

For the i-th iteration we can write [23]

K½ �i�1 $Df gi¼ $Rf gi�1 ð9Þ

K½ �i $Df gi¼ � yf gi ð10Þ
where $Df gi¼ Df gi� Df gi�1 is the displacement incre-
ment; $Rf gi�1¼ Rf gA� Rf gi�1 is the load imbalance;

yf gi¼ $Rf gi� $Rf gi�1 is introduced to simplify Eq. 10,
[K]i can be regarded as a secant-stiffness matrix, and i is the
iteration number.

From Eqs. 9 and 10 we can find [K]i by making a minor
change to [K]i-1 consistent with the secant condition Eq. 10:

K½ ��1
i ¼ K½ ��1

i�1þ $Df gi�1� K½ ��1
i�1 yf gi�1

� �
vf gTi�1; ð11Þ

where vf gTi�1 yf gi�1¼ 1
When the following expressions are defined,the method

is called the Broyden’s Good Method (BGM) [24]

vf gi¼
K½ ��1

i

� �T
$Df gi

$Df gTi K½ ��1
i yf gi

; $Df gTi K½ ��1
i yf gi 6¼ 0 ð12Þ

Applying the Sherman andMorrison formula [24, 25], and
denoting [Z] = [K]-1, we obtain the following expression for
the stiffness matrix at the ith iteration

Z½ �i¼ Z½ �i�1þ
$Df gi� Z½ �i�1 yf gi

� �
$Df gTi Z½ �i�1

$Df gTi Z½ �i�1 yf gi
ð13Þ

As one can see, the above computation involves only
matrix multiplication at each step and, as such, requiresO(N2)
arithmetic calculations. The calculation of [K]i is therefore
bypassed and this is a considerable improvement compared
with the Newton’s method where we need O(N3) arithmetic
operations to solve the linear system. To start the procedure
we need an initial approximation, [K]0, and its inverse [Z]0.
Then, at each iteration, [Z]0 is improved by the addition of a
matrix update, expressed by the second term in Eq. 13. This
requires storage of the inverse matrix, which, for modern
computers, does not constitute a serious problem.

Fig. 5 Force-strain curves for a hydrogen-free sample and a sample
with one H-atom embedded

Fig. 6 Evolution of hydrogen-
free 2D iron structure
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The above procedure was implemented in Mathematica
5.2 software. In order to illustrate how the IBA can handle
the problem of high non-linearity with the positive-to-
negative transition of element stiffness, the developed
computer code was applied to a simple 3-node (atoms)
structure (Fig. 2a).

Atom 1 simulated the imperfection (H-atom), and the
laws of interaction for links 1–2 and 1–3 (Fig. 3, red line)
were taken as being weaker compared with the 2–3 link
(Fig. 3, blue line). The two lower nodes (atoms 1, 2) in this
test structure were fully constrained, and the external load P
was applied to the unconstrained top node (atom 3).

The search for a solution in the case of a 3-atom test
structure is shown in Fig. 3. The four snapshots presented
correspond to iterations 0, 1, 2, 10. As a zero estimate of

[K]0, the stiffness matrix of the initial structure (Fig. 3, i=0)
was used.

In the process of computing the top node (atom 3) moves
and thus these lines change their positions. The adapted
termination criterion for an iterative process was that
recommended in [25]. We defined

CNORM ¼
X

ΔD2
j

� �1=2 X
D2

j

� ��1=2
ð14aÞ

RNORM ¼
X

$R2
j

� �1=2 X
R2
j

� ��1=2
ð14bÞ

where ΔDj, Dj, ΔRi-1 and Ri-1 denote the displacement
increment, increment, load increment, and load, respectively;

Fig. 7 Evolution of 2D iron
structure with one atom of
hydrogen

Fig. 8 3D computational cell
with embedded nano-crack
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CNORM and RNORM are the ratios of Euclidean norms.
The process is terminated when max(CNORM, RNORM) ≤
TOL, where TOL was chosen to be TOL=10–5. The test
problem terminates after the 10th iteration (Fig. 3). The final
configuration of the structure is shown in Fig. 2b. The error
of computing of internal forces applied to the top node (atom
3) was 1.024×10–4%.

Results and discussion

2D structure

According to present knowledge, the accumulation of
hydrogen in a subvolume located in the vicinity of a crack
tip plays a critical role in hydrogen-enhanced fracture [26].
A 2D hexagonal structure with 623 atoms of iron and an
identical structure with one hydrogen atom embedded were
used to estimate the effect of hydrogen on the process of
cracking. Figure 1a illustrates the computational cell
containing the central crack and one hydrogen atom. In
this figure the blue lines illustrate the iron–iron interaction
and the red lines the hydrogen–iron interaction.

After inserting the hydrogen atoms, and before applying
the external loading, the system was relaxed by quasi-
Newton method in a few steps. The initial relaxation was

performed for the weakened hydrogen–iron interatomic
forces. The final relaxed configuration was obtained by
incrementally increasing this force and applying the
relaxation procedure after each increment. This approach
was used to avoid numerical instability of the solution. The
reason for this problem is that the direct insertion of
hydrogen atoms often leads to inappropriately close
distances between the hydrogen and the neighboring iron
atoms, thus causing extremely high repulsive interatomic
forces, which result in numerical instability and collapse of
the solution.

Figure 4 shows the 2D hexagonal iron structure with one
hydrogen atom after the relaxation procedure, where the H-
atom is denoted in red. As can be seen, the hydrogen atom
pushes apart the neighboring iron atoms, causing distortion
of the lattice.

After insertion of a hydrogen atom into the lattice and
relaxing it, the hydrogen-free sample and a sample with
one hydrogen atom were both subjected to a numerical
tensile test. The lower row of atoms was held fixed while
the top boundary atoms were displaced upwards. Atoms
belonging to the lateral edges of sample were considered
to be unconstrained.

Simulation results demonstrated that the insertion of one
atom of hydrogen in the vicinity of a crack tip caused a
9.7% loss in the residual strength of the numerically tested

Fig. 9 Scheme of periodic–
periodic boundary imposed
along the z-direction

Fig. 10 Initial (unrelaxed) and
final (relaxed) conurations of
atoms near the crack tip
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sample in comparison with the critical stress for the
hydrogen-free structure (Fig. 5). The evolution of samples
under tensile load is shown in Figs. 6 and 7. The results
obtained allow the effect of hydrogen insertion into the 2D
hexagonal structure to be qualified as embrittlement.

3D structure

In the second example, the IBA was applied to a 3D bcc
iron lattice with the mode I crack embedded into the
structure (Fig. 8). The chosen computation cell was 24
lattice parameters in width and 36 lattice parameters in
height. A periodic boundary condition was imposed along
the z-direction to simulate plane strain conditions (Fig. 9).
A single crystal was composed of {001} planes, and the
crack plane (010) was chosen from the analysis performed
in [15] to facilitate an easier brittle cleavage, so that the

most dangerous case would be considered. The central
finite-length nano-crack was obtained by removal of a
monolayer of iron atoms so that the crack had as sharp a tip
as possible.

Insertion of hydrogen atoms into the 3D bcc iron lattice
was performed in a few steps in the same manner as for the
2D case. We started with the weakened hydrogen–iron
interatomic forces and incrementally increased this force,
applying a relaxation procedure after each increment until
the final relaxed configuration was obtained.

It was found that, after relaxation, the hydrogen atoms
moved to octahedral interstitial sites, in accordance with
Olander’s assumptions concerning the behavior of hydro-
gen in bcc iron lattice [9]. Upon being inserted into some
octahedral interstitial site, the atom of hydrogen can jump
into another interstitial site after relaxation. Figure 10 illu-
strates the initial (unrelaxed) and final (relaxed) configura-

Fig. 11 Nano-voids nucleation
and coalescence. Upper panels
Stress field patterns, lower
panels evolution of the stress
field patterns. White and black
denote the highest and the
lowest levels of stress intensity,
respectively
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tion of two hydrogen atoms near the crack tip. This is a 2D
projection of a 3D computation cell in a (001) plane and it
shows two atomic layers.

One can see the transition of one H-atom from the initial
interstitial site into another interstitial site. The other H-
atom shown in Fig. 10 remained at the same interstitial sites
after relaxation. Since the periodic boundary conditions and
plane strain state were considered, each H-atom in fact
represented an infinite string of hydrogen atoms placed at
interstitial sites along the [001] line.

Once the initial relaxation has been completed, the
constant displacement increments were applied to all atoms
in the upper plane in order to simulate a uniaxial tensile
loading in the y-direction. The lower plane of the sample
was held fixed while the vertical boundaries were con-
sidered to be free surfaces. After each incremental dis-
placement, the structure was relaxed to an equilibrium
configuration using the MS method, so that fracture
simulation was interpreted as a series of equilibrium states
corresponding to the history of external load/displacement
applied to the structure. The results of the simulation are
shown in Fig. 11; this figure illustrates the three stages of
structure evolution, where each frame corresponds to a
particular strain level ranging from 0.029 to 0.056.

The black and white pictures in Fig. 11 (lower panels)
illustrate the evolution of the stress field pattern within the
structure during the simulation run. In these pictures we can
observe zones of low stress under and above the crack and
zones of high stress formed near the crack tip. We find that
examining the local stress distribution is the most practical
way to detect defect nucleation and to visualize the future
growth path of the crack.

Stress field patterns (Fig. 11) serve to provide an
understanding of the phenomenon of hydrogen-assisted
cracking (in a mechanistic sense). The structural properties
of the crystal are affected by the type of potential functions
chosen to describe the H–Fe and Fe–Fe interatomic inter-
actions. The Olander Fe–H potential has a longer equilib-
rium distance compared with the Fe–Fe potential. Because
of the repulsive constituent of the Olander potential, the
hydrogen atom pushes away the neighboring iron atoms
and causes a severe distortion of the lattice. This lattice
distortion leads to serious weakness of iron–iron bonds in
the vicinity of the hydrogen atom and to the nucleation of
nano-voids under the applied load. After further loading,
these nano-voids can coalesce and eventually form a crack
(Fig. 11).

One can see that linking with voids causes the crack tip
to make a big jump and, when that happens, the highest
stress concentration moves to the area adjacent to the new
position of the crack tip (Fig. 11). In the process of voids
and crack coalescence, the hydrogen atom leaves the lattice
and moves to the cleavage space (Fig. 11). According to

[12], this phenomenon has been observed experimentally.
Thus the presence of the atomic hydrogen near the crack tip
leads to decohesion of bcc iron; the corresponding effect is
called embrittlement. Further tensile loading ultimately
results in material degradation. Calculations have shown
that the presence of one and two atoms of hydrogen in the
area near the crack tip caused losses of 14.1% and 22%,
respectively, in the residual strength of the numerically
tested samples compared with the critical stress for the
hydrogen-free material; further increases in the number of
H-atoms did not lead to a significant loss of strength.

Conclusions

We have performed an MS simulation of hydrogen-assisted
cracking in 2D hexagonal and 3D bcc iron structures under
tensile loading. The Morse potential function developed by
Olander [9], and the modified Morse potential developed
by Fujiwara and Ishii [21] were used to describe the H–Fe
and the Fe–Fe interatomic interactions, respectively. The
atomic system was treated as a truss-type structure. It is
shown that the quasi-Newton method allows computation-
ally efficient analysis of highly non-linear lattice structures
with imperfections. Simulation results demonstrated a
strong effect of hydrogen on the mechanisms of deforma-
tion and crack propagation in iron crystal. In other words,
the computer simulation showed that the presence of the
atomic hydrogen near the crack tip leads to severe
distortion of the iron lattice, structural decohesion and a
loss of strength in comparison with the hydrogen-free
sample.
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